Search for $B_s \rightarrow \mu^+ \mu^-$ and $B_d \rightarrow \mu^+ \mu^-$ Decays at CDF

Cheng-Ju Lin (Fermilab)

Representing CDF Collaboration

SUSY 2004 Tsukuba, Japan

June 17, 2004

INTRODUCTION

• In the Standard Model, the decay of $B \to \mu^+\mu^-$ is heavily suppressed

$$BR(B_s \to \mu^+ \mu^-) = (3.5 \pm 0.9) \times 10^{-9}$$
(Buchalla & Buras, Misiak & Urban)

• Experimentally, only upper limit on the branching ratio exist. Previous best published limit:

$$BR(B_s \to \mu^+ \mu^-) < 2.0 \times 10^{-6} @ 90\% CL$$

INTRODUCTION

• In many extensions of the Standard Model, the BR is enhanced by many orders of magnitude

- MSSM: Br($B\rightarrow\mu\mu$) is proportional to $tan^6\beta$ BR could be as large as ~100 times the SM prediction
- Tree level diagram is allowed in R-parity violating SUSY models Also naturally accommodate large enhancement

INTRODUCTION

- With the current dataset, we expect 0 event based on Standard Model prediction.
- If we observe the decay → **NEW PHYSICS!!!**
- No observation → exclude SUSY parameter space
- Could the universe be:

or

TEVATRON

- Tevatron is the highest energy collider in the world $E_{cm}(p\overline{p}) = 1.96 \text{ TeV}$
- RunII physics run began in Mar 2001 (~400/pb delivered so far) Current peak luminosity 7.8 E31/cm² sec (accelerator routinely breaks record luminosity)

- B production cross-sec is ~30μb at Tevatron (1nb at PEPII)
- All B species are produced
 (B+: Bd: Bs: Λb,)
- This analysis uses 171/pb of data

Highlights:

- Silicon detector coverage is a factor of 2 larger
- Detector electronics upgraded to handle 396ns bunch crossing
- Track triggered threshold is lowered → higher efficiency

INGREDIENTS OF THE ANALYSIS

For the search:

- Using 171/pb of data from the di-muon trigger sample
- Reconstructing di-muon events in the B mass window
- Measuring the branching ratio, or if no events observed \rightarrow setting a limit

$$\langle BR(B_s \to \mu\mu) \rangle = \frac{(N_{candidates} - Bgd)}{\alpha \cdot \varepsilon_{total} \cdot \sigma_{Bs} \cdot \int Ldt}$$

For the analysis, we need to:

- have a good understanding of the background,
- accurately measure the acceptance and efficiencies

Analysis optimization:

Figure of merit → expected 90% C.L. upper limit of the branching ratio

To avoid bias:

Analysis was performed blind \rightarrow didn't look in the signal region for analysis optimization.

ANALYSIS SELECTION

We use 4 discriminating variables to reject the enormous backgrounds

Discriminating Variables:

- Invariant mass (ΔM)
- Proper (2d) decay time:cτ = Lxy*M/Pt_B
- B flight and vertex axis opening angle:

$$\Delta\Phi = \phi(B) - \phi(vtx)$$

- Isolation variable:

Iso=
$$Pt_B/(\Sigma_t + Pt_B)$$

BACKGROUND SOURCES

 $B \to \pi\pi$, K π , KK (with K, π misidentified as muons):

- Generated a sample MC two-body hadronic B decays
- Take muon fake rates for pion and kaon from data
- Convolute muon fake rates with pT spectra
- → Background contribution from two body hadronic B decay is more than 100 times smaller than expected limit.

Other resonance feed-downs (surprises):

- Generated a sample of generic B-Bbar decays (equivalent to ~190pb⁻¹)
- Apply analysis cuts on the sample
- \rightarrow No events survived all cuts

Combinatoric background (μ +fake, fake+fake, $b \rightarrow \mu + c \rightarrow \mu$, etc...) : Estimated from upper and lower mass side-bands

BACKGROUND ESTIMATE

To improve the uncertainty on background estimate, we factorize the rejection for each independent set of cuts:

 $N(bgd) = N(sideband|c\tau,\Delta\Phi)*R(iso)*R(\Delta M)$

- N(sideband| $c\tau,\Delta\Phi$) == no. of events in sideband region passing $c\tau$ and $\Delta\Phi$ cuts
- R(iso) == fraction of background expected to survive a given isolation cut
- $R(\Delta M) ==$ given N(sideband), estimate of N(signal window)

Correlation Profile Plots

$$\rho_{xy} = \frac{1}{N-1} \cdot \frac{\sum_{i=1}^{N} (x_i - \hat{x})(y_i - \hat{y})}{\sigma_x \sigma_y}$$

 $c\tau$ and $\Delta\Phi$ are strongly correlated.

Background Invariant Mass Distribution (Data)

For background estimate, we assume the background shape is linear!

Cross-Check of Background Estimate Procedure

Control Samples from data:

- (1) SS \rightarrow same sign ($\mu^{\pm}\mu^{\pm}$) c τ <0 events,
- (2) SS + \rightarrow same sign ($\mu^{\pm}\mu^{\pm}$) c τ >0 events,
- (3) **OS** \rightarrow opposite sign ($\mu^+\mu^-$) c τ <0 events,

For each sample above, we repeated the cross-checks using three different set of cuts:

Cut A : $c\tau > 100 \mu m$, $\Delta \Phi < 0.20 rad$, Iso>0.6 (loose cuts)

Cut B : $c\tau$ >150 μ m, $\Delta\Phi$ < 0.20rad, Iso>0.7 (near optimal)

Cut C: $c\tau > 200\mu m$, $\Delta \Phi < 0.10 rad$, Iso>0.8 (hard cuts)

Checking Background Estimate Procedure

	Sample	N(expctd)	N(obsrvd)	P(>=obs exp)
A	05-	10.43 +/- 1.89	16	4%
	SS +	5.80 +/- 0.98	4	83%
	SS-	6.72 +/- 1.10	7	51%
_	Sum	22.94 +/- 3.14	27	
В	05-	3.69 +/- 0.80	6	17%
	SS +	1.83 +/- 0.35	1	84%
	SS-	2.32 +/- 0.42	4	20%
_	Sum	7.84 +/- 1.19	11	
C	05-	0.64 +/- 0.22	1	47%
	SS +	0.29 +/- 0.08	0	75%
	SS-	0.27 +/- 0.08	1	24%
	Sum	1.21 +/- 0.27	2	

ACCEPTANCE AND EFFICIENCY

$$\alpha \cdot \mathcal{E}_{total} = \alpha \cdot \mathcal{E}_{trig} \cdot \mathcal{E}_{reco} \cdot \mathcal{E}_{final}$$

- α (geometric acceptance for pT(B_{s,d})>6GeV, $|\eta|$ <0.6): Estimated from full Monte Carlo simulation \rightarrow (6.6±0.5)%
- $\varepsilon_{\text{trig}}$ (di-muon trigger efficiency): Measured directly from the data using a sample of J/ $\Psi \to \mu\mu$ decays $\to (85\pm3)\%$
- ϵ_{reco} (tracking, silicon, muon and vertex reconstruction): Absolute tracking efficiency is obtained by embedding MC muon tracks in data. The rest are measured from data using J/ $\Psi \rightarrow \mu\mu$ decays.

$$\rightarrow$$
 (67±3)%

- $\varepsilon_{\text{final}}$ (efficiency of analysis selection cuts: ΔM , $c\tau \Delta \Phi$, Isol):
 - Estimated from Monte Carlo (varied between 28-78% based on ~200 different combination of selection cuts)
 - Only these 4 parameters are allowed to vary in the analysis optimization
 - Cross-checked using $B^+ \rightarrow J/\Psi~K^+$ data and MC \rightarrow assigned $\pm 5\%$ syst

OPTIMIZATION RESULTS

Optimization:

Poisson prob

$$\left\langle BR(B_{s} \to \mu\mu)\right\rangle_{CL}^{90\%} = \frac{\sum_{n} N_{CL}^{90\%} (n \mid n_{bg}) \cdot P(n \mid n_{bg})}{2 \cdot \alpha \cdot \varepsilon_{total} \cdot \sigma_{Bs} \cdot \int L dt}$$

The optimal set of final selection criteria is:

$$\Delta M_{\mu\mu}$$
 = +/- 80 MeV around M(B_s)=5.369 GeV

$$c\tau > 200 \mu m$$

$$\Delta\Phi$$
 < 0.10 rad

Isolation > 0.65

which corresponds to:

$$\alpha^*$$
Etotal = $(2.0 + - 0.2)\%$

single event sensitivity = 1.6×10^{-7}

$$<$$
Bgd $>$ in 171 pb⁻¹ = 1.1 +/- 0.3 events

($\alpha\epsilon$ & Bgd are unchanged for mass window centered on 5.279 GeV for the Bd $\rightarrow \mu + \mu -$ search)

<u>B</u> → μμ RESULTS

We have one common event within the Bs and Bd 3σ mass window.

The expected bkg is 1.05 ± 0.30 (for Bs) and 1.07 ± 0.31 (for Bd).

$B \rightarrow \mu\mu RESULTS$

For optimized cuts of $(c\tau, \Delta\phi, iso) = (>200 \, \mu m, <0.10 \, rads, Iso >0.65)$ and a $\pm 80 \, MeV$ window around world avg Bs,d mass:

```
Bs: \alpha \times \epsilon = 2.03 \pm 0.21\%

< bgd > = 1.05 \pm 0.30 events in 171 pb<sup>-1</sup>

We observed 1 event which yields a limit of: 5.8E-7 @ 90% CL

7.5E-7 @ 95% CL
```

Previous best published limit = 2.6E-6 @ 95% CL (CDF Run I)

```
Bd: \alpha \times \epsilon = 1.99 \pm 0.21\%

< bgd > = 1.07 \pm 0.31 events in 171 pb<sup>-1</sup>

We observed 1 event which yields a limit of:

1.5E-7 @ 90% CL

1.9E-7 @ 95% CL
```

Current best published limit = 1.6E-7 @ 90% CL (Belle)

Some Excluded SUSY Regions From This Result

This new result excludes a significant portion of SUSY phase-space !!!

Expected Limit on Br(Bs $\rightarrow \mu\mu$) vs. Luminosity

- Current set of cuts are optimized for ~400 pb⁻¹
- Will need to re-optimize when we have more than 400 pb⁻¹ of data to push limit < 10⁻⁸

SUMMARY AND PLANS

- We have updated the analysis using 171pb⁻¹ of data.
- The upper limits on the branching ratio are:

$$\begin{array}{l} Br(Bs \to \mu\mu) < \ 5.8E\text{--}7 \ @ \ 90\% \ CL \\ Br(Bs \to \mu\mu) < \ 7.5E\text{--}7 \ @ \ 95\% \ CL \\ \\ Br(Bd \to \mu\mu) < \ 1.5E\text{--}7 \ @ \ 90\% \ CL \\ \\ Br(Bd \to \mu\mu) < \ 1.9E\text{--}7 \ @ \ 95\% \ CL \\ \end{array}$$

- Bs result is a factor of 3 better than the previous published limit Bd result is slightly better than the Belle published limit
- Paper has recently been submitted and accepted by PRL
- We are in the process of updating the analysis using full data sample and improved analysis method. Will release the new result soon.